Additively Manufactured Porous Ti6Al4V for Bone Implants: A Review
نویسندگان
چکیده
Ti-6Al-4V (Ti64) alloy is one of the most widely used orthopedic implant materials due to its mechanical properties, corrosion resistance, and biocompatibility nature. Porous Ti64 structures are gaining more research interest as bone implants they can help in reducing stress-shielding effect when compared their solid counterpart. The literature shows that porous fabricated using different additive manufacturing (AM) process routes, such laser powder bed fusion (L-PBF) electron beam melting (EBM) be tailored mimic properties natural bone. This review paper categorizes designs into non-gradient (uniform) gradient (non-uniform) structures. Gradient design appears promising for applications closeness towards morphology improved properties. In addition, this outlines details on structure fatigue behavior, multifunctional designs, current challenges, gaps studies implants.
منابع مشابه
Additively Manufactured Porous Biomaterials and Implants
Recent advances in additive manufacturing (AM) techniques (otherwise known as 3D printing) have enabled fabrication of a new class of porous biomaterials (Figure 1) with arbitrarily complex and precisely controlled topologies that e.g. resemble the geometry and micro-architecture of (trabecular) bone. Since the geometry of scaffolds and biomaterials is an important factor in bone tissue regener...
متن کاملAdditively manufactured sub-periosteal jaw implants.
Severe bone atrophy jeopardizes the success of endosseous implants. This technical note aims to present the innovative concept of additively manufactured sub-periosteal jaw implants (AMSJIs). Digital datasets of the patient's jaws and wax trial in occlusion are used to segment the bone and dental arches, for the design of a sub-periosteal frame and abutments in the optimal location related to t...
متن کاملPorous NiTi for bone implants: a review.
NiTi foams are unique among biocompatible porous metals because of their high recovery strain (due to the shape-memory or superelastic effects) and their low stiffness facilitating integration with bone structures. To optimize NiTi foams for bone implant applications, two key areas are under active study: synthesis of foams with optimal architectures, microstructure and mechanical properties; a...
متن کاملIn vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects
Metallic implants with a low effective modulus can provide early load-bearing and reduce stress shielding, which is favorable for increasing in vivo life-span. In this research, porous Ti6Al4V scaffolds with three pore sizes (300~400, 400~500, and 500~700 μm) were manufactured by Electron Beam Melting, with an elastic modulus range of 3.7 to 1.7 GPa. Cytocompatibility in vitro and osseointegrat...
متن کاملAdditively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical Behavior: A Review
Additive manufacturing (AM), nowadays commonly known as 3D printing, is a revolutionary materials processing technology, particularly suitable for the production of low-volume parts with high shape complexities and often with multiple functions. As such, it holds great promise for the fabrication of patient-specific implants. In recent years, remarkable progress has been made in implementing AM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Metals
سال: 2022
ISSN: ['2075-4701']
DOI: https://doi.org/10.3390/met12040687